Code: 20EC4501D

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

COMPUTER ARCHITECTURE & ORGANIZATION (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Explain the register transfer and control	L2	CO1	7 M			
		functions with a neat block diagram.						
	b)	Analyze the working of arithmetic logic	L3	CO2	7 M			
		shift unit.						
OR								
2	a)	Illustrate the working of bus system for four	L2	CO1	7 M			
		register with a neat diagram.						
	b)	Make use of 4-bit adder-subtractor and with	L3	CO2	7 M			
		an example show the working of it.						
UNIT-II								
3	a)	Outline the control functions and	L2	CO1	7 M			
		microoperations used for basic computer.						
	b)	Explain instruction cycle for the basic	L2	CO2	7 M			
		computer with a neat flowchart.						
OR								

4	a)	Differentiate between hardwired control and	L2	CO1	7 M
-		micoprogrammed control.			, 1,1
	b)	Explain the three instruction code formats	L2	CO2	7 M
		with example.	22		, 1,1
		UNIT-III			
5	a)	Write three-address, two-address, one-	1.3	CO3	7 M
		address and zero-address instructions for	20		, 1,1
		X=(A+B)*(C+D).			
	b)	An instruction "ADD R1, A" is stored at	L3	CO3	7 M
		memory location 4004. R1 is a processor			,
		register and A is a memory location with			
		address 400. Each instruction is 32-bit long.			
		What will be the values of PC, IR and MAR			
		during execution of the instruction?			
		OR		<u> </u>	
6	a)	Explain straight line sequencing and	L3	CO3	7 M
		branching with an example.			
	b)	Demonstrate zero, one, two and three	L3	CO3	7 M
		address instruction formats with examples.			
		UNIT-IV		<u>'</u>	
7	a)	Apply booth's algorithm to multiply two	L3	CO2	7 M
		numbers 23(multiplicand) and -			
		9(multiplier).			
	b)	Compare associative mapping and set-	L4	CO4	7 M
		associative mapping with neat diagrams.			
		OR			
8	a)	Explain the addition and subtraction with	L3	CO2	7 M
		signed 2-s complement data. Give examples			
		for each.			

	b)	A block set associative cache consists of a	L4	CO4	7 M	
		total of 64 blocks divided into 4-block sets.				
		The main memory contains 4096 blocks				
		each of 128 words.				
		i. How many bits are there in main				
		memory address?				
		ii. How many bits are there in each of the				
		TAG, SET and WORD fields?				
		UNIT-V				
9	a)	Explain how I/O devices should be	L2	CO1	7 M	
		organized in a priority structure.				
	b)	Analyze the operation of the instruction	L4	CO4	7 M	
		pipeline with a timing diagram of an				
		instruction pipeline in the presence of a				
		branch instruction encountered at instruction				
		I3.				
OR						
10	a)	Compare and contrast software and	L2	CO ₁	7 M	
		hardware priority interrupts.				
	b)	Explain in detail vector processing.	L4	CO4	7 M	